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Final Report: Self-Configuration and Localization in
Ad Hoc Wireless Sensor Networks

Lance C. Brez and Stephen Goddard

I. SUMMARY OF CONTRIBUTIONS

We explored the error mechanisms of iterative decoding wfdensity parity-check (LDPC) codes.
This work has resulted in nine peer-reviewed conferencensdf], [2], [3], [4], [5], [6], [7], [8], [9], three
journal papers [10], [11], [12], and two pending journal eep[13], [14] in the fields of channel coding and
information theory. The study of iterative decoders and thehavior is one of the most important problems
in the area of channel coding, as their unpredictable behaws impeded the deployment of LDPC
codes in many real-world applications. We proposed a thieatelecoder, referred to as a universal cover
decoder, that allows connections to be drawn betweeniiterdecoders and other more well-understood
decoders like the linear program decoder and graph covexdeed?2], [4]. During our examination of
the error-causing mechanisms of iterative decoders, we able to prove several previously unknown
properties related to their behavior [10].

We also developed several finite tree-based decoders of ldOBES, including the extrinsic tree decoder,
and an investigation into their performance and boundingplogities [5], [6]. This research led to the
discovery of a new category of error causing mechanismswknas deviation-based trapping sets [7],
[11]. Preliminary results show that it is possible to useiaen-based trapping sets to conditionally
upper bound the probability of error for iterative decodimigLDPC codes [14]. Our work in channel
coding and network coding was also applied to wireless semstworks (WSN). Wireless sensors often
require a high level of power-efficiency, and can benefit froetwork communications strategies that use
both channel coding and network coding. We recently creatddcoder that integrates non-binary LDPC
codes, random linear network coding, and a new correlatemoder that operates on systems where the
sensors have correlated data [9]. Preliminary results ghatvsignificant improvements can be achieved
using this new decoder.

Using these funds a wireless sensor network testbed is ajmetlin the Cyber-Physical Networking
Laboratory, Computer Science and Engineering, UNL. Theentory in the lab consists of over 200
sensor nodes including MicaZ, SunSPOT, TMoteSky/TeloBBS) and Imote2 as well as NB100/NSLU2
and HP iPAQ hw6925 gateways; CMUCam3 CMOS cameras and Agrerizarcia Mobile Robots. The
CPN Testbed supports remote programming, out-of-band toramg, power management, and virtual
sensing. A management software has been developed usingnine (XubunTOS) operating system,
Bash and PHP scripts, the MySQL database, and the Apache¥fslerSFor the power management
support, a hardware/software solution based on the DAQde\I-6810 (from National Instruments Inc.)
and a customized microcontroller control board is beingettgyed so that real-time energy consumption
monitoring is supported. Finally, a virtual sensing platfiois being designed to emulate sensing readings
in a evaluation scenario. The WSN testbed has been intéynsiged for the purpose of validating the
accuracy of various probabilistic QoS analysis models f@N&. Significant contributions from this work
include a new cyber-physical event model [15] and conceptéabased extensions that facilitate complex
event compositions [16].

To provide an analytical tool for the development of realgiWSN solutions, in [17], the distribution of
end-to-end delay in multi-hop WSNs is investigated. Acawgty, a comprehensive and accurate crosslayer
analysis framework, which employs a stochastic queueindeinm realistic channel environments, is
developed. This framework captures the heterogeneity ilN8U8 terms of channel quality, transmit power,
gueue length, and communication protocols. To validatgtbbabilistic analytical framework of the end-
to-end delay, realistic experiments with TelosB motes amdacted on the testbed. The experiments are



conducted with varying network parameters and topologes, the measured delay is used to compare
against the model analysis. The cross-layer framework eansked to identify the relationships between
network parameters and the distribution of end-to-endydatel accordingly, to design real-time solutions
for WSNs. To the best of our knowledge, this is the first worknigestigate probabilistic QoS guarantees
in WSNSs.

In [18], a stochastic analysis of the energy consumption iBNW is developed for random network
deployments. Accordingly, a comprehensive cross-layatyars framework, which employs a stochastic
gueueing model, is developed. Using this framework, théridigion of energy consumption for nodes
in WSNs during a given time period is found. It is shown thatewhthe time duration is long, the
energy consumption asymptotically approaches the Normsdtiltltion. To validate the probabilistic
energy consumption analysis for WSNs, data acquisition ulesdequipped in the testbed are utilized
to measure the energy consumption by each node. The batkage and the current drawn by the mote
are measured over time to obtain the actual power consump@imce the modules can continuously
monitor the voltages at a high frequency of 10kHz, we are #&dbleapture the energy consumption of
a packet transmission, which takes less than 2ms. The apss{framework is also used to identify
relationships between the distribution of energy consionpand network parameters, such as network
density, duty cycle, and traffic rate.

Finally, in [19], a spatio-temporal fluid model is developtd capture the delay characteristics of
event detection in large-scale WSNs. More specifically,dis¢ribution of delay in event detection from
multiple reports is modeled. Accordingly, metrics such aamdelay and soft delay bounds are analyzed
for different network parameters. The testbed is used tolat our event detection delay analysis. In the
experiment, each node within a certain range simultangaialts to generate a series of report packets
upon receiving a signaling packet. The delay until the firsteport packets received by a designated
sink is recorded as the event detection delay. This measlaleg is used to validate the accuracy of the
proposed analytical model. The resulting framework cantbized to analyze the effects of network and
protocol parameters on event detection delay to realiZietirma operation in WSNSs.

[I. DETAILED LOCALIZATION RESULTS
A. Overview of Mobility Models

Movement models can be classified into two broad categcei@ity models andyroup models. Entity
models are used to describe movement of an individual pefBas person’s movement is independent
of outside activities, such as other people’s movementstygmodels are widely used in Mobile Ad-hoc
NETwork (MANET) simulations. Group models are used to déscthe movements of many individuals.
Unlike in entity models, an individual’s movements are noependent upon outside activities, such
as other individuals’ movements. Some scenarios, such tefledd movement or traffic patterns on a
freeway, may be inappropriate for entity modelling. In swelses a group model may be used to more
accurately capture movement patterns.

The Random Walk Mobility Model has been a widely used modeirfdividual movementsO. Its appeal
lies in its simplicity; consider first the simple one-dimamsal (1-D) Random Walk model. In this case,
the mobile node is able to move forward and backward onlyf &&/she were forced to walk along a
beam. At equal steps in time, separated/hythe mobile node is allowed to choose a direction and speed
randomly from predefined ranges, i.e., [Forward Backwand] [&,.;, Vi..x], respectively. The mobile node
then travels in this direction at this speed for tifigat which time it repeats the process of randomly
choosing a new direction and speed. In the case of-BnRandom Walk, the only difference is that the
node can now move in any direction in theD space, rather than simply forward or backward.

Movements in the Random Walk model are independent of edngr ot time, and are also independent
of other mobile nodes’ activities. This independence hiadlee ability of the model to realistically model
a person’s movement, since a person’s movement at one poinhne is typically affected by his/her



previous movement. It would be unrealistic for a person t&keneompletely random movements while
trying to get from the living room to the kitchen, for example

The Random Waypoint model is a slightly modified version & Bandom Walk model, and has been
used as a ‘benchmark’ model for the evaluation of MANET nogitprotocols. In this model, a mobile
node still chooses a random speed from a predefined rangeeugownstead of continuing the selected
movement over a period of timé, the node randomly selects a destination within the sinaradrea,
and continues movement until reaching the destinatione@me node has reached the destination, it waits
here for a certain period of time (pause time), which can Imeloenly chosen from a predefined range.
After this time expires, the mobile node repeats the prooéshoosing random movement.

Just as for the Random Walk, this model's movements are erémt in time and independent of
other nodes’ activities. However, this model addressesutirealistic movement of the Random Walk
in moving randomly at equal intervals of time to get from opedtion to a destination. The Random
Waypoint model attempts to model this destination-drivepegt of human movement, which may make
it more realistic than the Random Walk model.

An undesired phenomenon appears in the simulation of mamgesonaking use of the Random
Waypoint model, which led to the development of the Randome@ion model. The phenomenon is
a high probability of nodes traveling to or through the cemtiethe simulation area, which is undesirable
when clustering patterns are to be avoided. To alleviatedfiect, the Random Direction model requires
a node to pick a random direction and speed, and continuelitmgvin that direction until it reaches
a boundary of the simulation area. Once it reaches a bounidlgrigks a random pause time, and then
repeats the random movement process. A slightly modifiesimeiof the Random Direction model allows
the node to pick a random destination along its random dimedhat it has chosen, rather than force it
to continue movement to a boundary. It should be noted thaintiodel is equivalent to a Random Walk
model with pause times. The Gauss-Markov model attemptsddeinthe fact that human movement
is not completely random, but is actually dependent uporipus movements. This model ‘tunes’ the
randomness through one parameter,

A node is initially assigned a speed and direction. At fixeiivals in time separated L, the node
calculates its next movement at timé& through

Sp=aS,-1+ (1 —a)pus + /(1 —a?)Ng (1)
and
D,=aD, 1+ (1 —a)up++/(1—a?)Np, (2)

whereS,,_; and D,,_; are the current speed and direction, respectielf;a < 1 is the tuning parameter
of randomnessys andu.p are the mean values of speed and direction as co; Ng and N, are zero-
mean Gaussian random variables with varianegsand ¢%,, and possibly a non-zero covarianeg;p.
Note that whemy = 0, there is no correlation between the current movement aachéxt movement,
which corresponds to purely random movements which arepemident at each point in time. The other
extreme is wherv = 1, where the current movement is identical to the previousemmant. This case
corresponds to linear movement.

Another model that makes use of non-random movement is theaBilistic Version of the Random
Walk Model (PVRW). By utilizing a transition probability nra,

P(0[0) P(0[1) P(0[2)
P = | P(1/0) P(1]1) P(1]2) |, 3)
P(2(0) P(2|]1) P(22)
the current movement choice at timg’ is affected by past movements. State 0 is the no movement

case, state 1 is a movement in the negative directioor(y axis), and state 2 is a movement in the
positive direction £ or y axis). This model produces a movement at titme+ 1)7" which is dependent



Fig. 1. Rectangular Perimeter.

upon the previous movement at timé&'. This may be more realistic than producing a movement that is
independent of the previous movement, which results inlpussadom movements.

People tend to move mostly forward in day-to-day tasks, amlunusual to have a sudden, backward
movement. This model makes use of this pattern of human merem P, as transition probabilities
for movement (given that the node is already moving, €g2|2) = 0.7) are higher than probabilities
of moving directly backward, which in this model, are zerdthAugh this model may be more realistic,
appropriate transition probabilitig3(i|j) are needed. These probabilities must be found from path data
of actual human movement. In addition, given that probaédihave been found from actual movement,
the values may only be appropriate for the movement scefframo which the data was recorded.

B. A New Mobility Model

The new simulation mobility model proposed here has beeredaimeModified Probabilistic Version
of the Random WalkMPVRW), since it is related to the PVRW model. Recall thag AWVRW defined
movements using a state transition matix, The transition probabilities defined how the next movement
was related to the previous movement, and so the PVRW was lkoMarodel of the first order. Movements
were defined relative to the two axesandy, and the PVRW used separate transition matrices for each
axis. Consider ther-axis only. The states are forward (2), no movement (0), amckward (1). The
transition probabilities say that given stafein the z-axis at timenT'"

. the probability of moving in the positive direction at time(n + 1)T" is P(2|5)

. the probability of moving in the negative direction at time(n + 1)7" is P(1]5)

. the probability of not moving in the direction at time(n + 1)7T" is P(0|95)

The transition probabilities for thg-axis are defined in the same fashion.

There are some shortcomings of the PVRW model. Realistitsitian probabilities are not provided
for this model, and only educated guesses have been madédilioa, the sampling intervall’, has not
been defined. Lastly, this model assumes that if any movepwnirs, it is always the same velocity. In
fact, this velocity is simply a preset average velocity ieyious work. The MPVRW model is designed
to address these shortcomings. The problem of not knowialgstie probabilities is eliminated, as these
were derived from movement data of actual human movemer.sBimpling intervall’, is defined for
this model. In order to improve the velocity modelling, thWRW model uses probabilities to describe
a velocity distribution, rather than assuming constanoeigy.

In order to understand the MPVRW, the concept of relative enoent must first be introduced. Consider
the simple case of a person walking around the perimeter eftamgle (See Figure 1). The object moves
clockwise around the rectangle, beginning and ending0at), by taking steps of length 1 meter at



each sample timepT,n = 0,1,...,10. In terms of absolute movement, this path could be compietel
described by the positions at each sample time. Howeveering of relative movement, the path would
be completely described by the set of relative movementsaeth sample time, i.e., (forward, forward,
right, forward, forward, right, forward, right, forwardprward), where the first movement is assumed to
be forward. As seen in this simple example, relative moverdefines the current movememative to

the previous movement. The movements described by the MPéRfelative movements, rather than
absolute movements, as are used in the PVRW.

The MPVRW has two sets of independent transition probaslitThe first set defines the relative
movements, while the second set defines the velocities.eSimese are discrete state transitions, the
relative movements and velocities must be quantized insoreie values. The number of quantization
levels affects the accuracy of the model, but the number ahtization levels is also limited by the finite
memory constraints of any computer. For simplicity, onlyuantization levels will be discussed, but this
number has no special importance.

Maintaining consistent notation is important, and so thatre movements are labeled as seen in Figure
2. Forward is always labeled as 1, with the rest of the movésnkabeled sequentially in a clockwise

Forward
1
8 2
Left 7 3 Right
6 4
5
Backward

Fig. 2. Quantized Relative Movement Notation.

fashion. In addition, a ‘no relative movement’ state is ua®d, and is always labeled as the last state
(e.g., 9 in this example). For the quantized velocities, 8 im/always labeled as 1, and 2 m/s is always

labeled as the last state. The remaining quantized vedgsditie evenly spaced between the two extremes

(e.9..%.5,...,13 m/s), and are labeled 3, ..., 8, respectively.

The first-order transition probabilities for relative mavents and velocities are storedkh,,,, , and
Py, ., respectively. The entries @&,,,, , are labeled as
Py (1) -+ Ppu(1]9)
Parjm,_, = : : ; (4)
Pu(9[1) -+ Pu(9]9)
where Py, (j|k) is the probability of movement at time i7" given movement at time (: — 1)7. The
entries ofPy,, , are labeled as
Py (1) - Py(1]9)
Py, ., = : : : ()
Py(9[1) --- Pv(9]9)
wherePy (j|k) is the probability of velocity; at time:T" given velocityk at time (i — 1)7.



In addition to first-order transition probabilities, the MRW model can take into account any desired
order of probabilities. Of course, if the statistics of rstit movement are not strongly dependent upon
higher order probabilities, then they should not be usedheg add complexity to the model. However,
if the higher order probabilities are found to be significahen their use should be considered. This
consideration would have to take into account the memongttaimts of the system, as the size of the
transition matrices grows exponentially with increasingeo.

Supposing thabt'"-order statistics are used, the matrix would have 1 dimensions, and would be
denoted byP,;,, and Py, for movements and velocities, respectively. Individualries would have
the form P, (m|m;), which is the probability of movement. at time i7" given movementan, =
[mi—1,...,m;—) attimes(i — 1)T, ..., (i — b)T, respectively. Similar notation is used for velocities.

As mentioned, the MPVRW model assumes that movement andityelarobabilities are independent
of each other. However, this assumption may not be true.€eftier a model which makes use of this
dependence is proposed, and is called bt MPVRW (JMPVRW) model. This model is identical to
the MPVRW model, with the independent transition probapitnatrices,P y/.,, andPy -, replaced with
a joint transition probability matrixP ; vm, v, -

Assuming thab'"-order statistics are used, the joint probability matrixadbhave dimensio(b+ 1).
The individual entries would be denoted by

PM,V(m7U|mb>Vb)a (6)

which is the joint probability of movement. and velocityv at time T, given the past observed
movements and velocities.

Notice that the size of the probability matrix in the IMPVRV@ahel grows twice as fast as the MPVRW
model does for increasing Therefore, if the statistics of realistic movement andugy are not strongly
correlated, the MPVRW model may be used, since its compléxiess than that of the IMPVRW model,
for a givenb.

C. Comparing Mobility Models

The MPVRW and JMPVRW models are compared to other mobilitge®to determine whether the
new models can capture more realistic human mobility. $jgady, the Gauss-Markov and the PVRW
models are used as comparison mobility models.

Simulations are done on select paths of interest. The fir8t pf interest results from the"! 5
minutes of data collected of a non-disabled person movirggiathe experiment space at the Madonna
Rehabilitation Center, which will be referred to as Path he Tsecond path of interest was generated
artificially in MATLAB, and will be referred to as Path 2. It ia simple path that is meant to mimic
a model train moving on an oval track. This path is of intergate it has been used to measure the
performance of smart space tracking algorithms in otherkwerg., [?]). The path’s time duration is
approximately 1.6 minutes. The third path results from thmiButes of data collected from a person
using an electric wheelchair, and will be referred to as RatRinally, the fourth path is the result of 5
minutes of data collected from a person using a cane. This it be referred to as Path 4.

The first set of experiments investigates the statisticslidutions of relative movements and quantized
velocities for various human paths. For each path,ith@rder relative movement and quantized velocity
statistics are gathered. These statistics represent gebdtions of movement and velocity, given the
previous movement and velocity. The purpose of this expamins to determine the validity of the Gauss-
Markov simulation model. Recall that in the Gauss-Markovdelp1®t-order statistics have a Gaussian
distribution. Therefore, this experiment investigatew lotosely 15°-order statistics gathered from the paths
can be described by Gaussian distributions. For this exyeeri, let the prior relative movement index be
denoted byM,,;.,, and let the prior quantized velocity index be denotedvy.,.

The statistics were gathered for various paths ahd- % with the results plotted using MATLAB.
The PMF of the relative movement requires some explanatidnich is best done through example. In



the 9-state MPVRW case, relative movement 1 (forward) is pedpo the zero point on the horizontal
axis. Relative movements 2, 3, 4, and 5 are mapped to 1, 2,d34 am the horizontal axis, and relative
movements 6, 7, and 8 are mapped to -1, -2, and -3 on the htalzaxis. Relative movement 9 (no
movement) is not plotted; in fact, the ‘no movement’ caseads eounted in these statistics. Therefore
these PMFs show the distribution of the relative movemeritesnwthereés movement. The effect of this
mapping, with respect to the Gauss-Markov comparison, sage visual analysis.

The statistics explored initially are derived from Path 1thai, = 4 Hz. Relative movement results can
be seen in Figure 3 for the 33-state MPVRW. In addition to tkeeemental PMFs, a Gaussian PMF
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Fig. 3. 1°*-order Relative Movement Statistics for Path 1 with = 4 Hz, Mpior = 1.

is also plotted, with mean and variance equal to the expatmhenean and variance. Although it is a
PMF, it is plotted with a continuous line to ease visual asislyQuantized velocity results can be seen
in Figure 4. Normality plots are shown in Figures 5 and 6 fa thovement and velocity statistics. Note

1-Order Distribution Given Quantized Velocity 0.2500 m/s
T T

T T T
0.181 —* Experimental PMF | o
Gaussian

0.14

012 /

Probability
o o
o o o
= 3 [

=4
o
R

o
o
N}

M

I
-0.5 0 0.5 1 15
Quantized Velocity (m/s)

1o
i

Fig. 4. 1%*-order Quantized Velocity Statistics for Path 1 with = 4 Hz, Vprior = 5.

that if the data is normally (Gaussian) distributed, theadatints will plot closely to the linear line in a
normality plot.
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The statistics explored second are derived from Path 2 Wjte 4 Hz. The purpose of showing Path
2’s statistics is to present how much they differ from statsscollected from actual human mobility.
Results can be seen in Figures 7 and 8 for the 33-state MPVRW.

It was found experimentally that three parameters affeetdilstributions: previous state, mobility type,
and sampling frequency.

The 1%*-order distribution of relative movements depends uponptieeious relative movement. As the
previous movement gets farther away from the forward diwacthe distribution appears to become more
uniform. Also, when the previous movement is the ‘no movetnease, the distribution is very different
from the other distributions.

When the previous movement is forward, the distributionasrsto be highly centralized about the
forward movement, as seen in Figure 3. This distributionas-Gaussian.

Recall that in the Gauss-Markov model, conditional disttitins are identical for all conditions, only
with a shift in the mean. Thus, the Gauss-Markov model is acdarate mobility model for movement
directions. Not only do these experiments show that the itondl distributions are dependent upon the
previous movement, but they also show that the distribsteme non-Gaussian.
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Experiments also show that the conditional distributiongofantized velocities depends upon the
previous velocity. In addition, it can be seen that when thevipus velocity is close to zero, as it is
in Figure 4, the distribution cannot be truly Gaussian, aswlocity is not allowed to be less than zero.
In these cases, simulations show that the distributionadseslto a truncated Gaussian, similar that that
seen in Figure 4. However, it was found experimentally tisath@ previous velocity continues to increase
beyond zero, the distribution can be approximated by a Gauss

Although the Gaussian model may describe the conditiorstidution of the quantized velocities in
some cases, it is not able to describe it in all cases. Thesetbe Gauss-Markov model is also an
inaccurate mobility model for velocities.

The 1%*-order distributions obtained from Path 2 can be seen inrEigu These distributions show the
difference between real human mobility and train mobilithie simulated train movements and velocities
have less variety than those from the human paths. Additigtiae simulated train distributions have very
different forms than those found in human paths. The sigmifie of this lies in predicting the performance
of tracking algorithms. In this application, performanseoiften determined for simple train-like paths,
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and the results are used to predict tracking performancealfpeople. However, as these experiments
show, human mobility is very different from train-like mdiby. Thus, tracking performance of train-like
paths may not be a good indicator of tracking performanceuofidn paths.

Although not shown here, the effects of sampling frequeneyth@ relative movement and quantized
velocity distributions were found to be significant for allthe paths. Experiments show that the resulting
distributions atF, = 1 Hz are generally less centralized than those founél,at 4 Hz. In other words,
the distributions become more ‘random’. This trend corggias sampling frequency gets even lower.

Thus, this shows that sampling frequency has a strong effetite conditional distributions. Therefore,
in the context of evaluating mobility models, sampling freqcy must be considered when determining the
accuracy of mobility models. For example, the Gauss-Mankmdel is shown to be somewhat accurate
in describing the conditional distribution of velocity. tever, experiments show that decreasing the
sampling frequency causes the Gauss-Markov model to bealsssate in describing the conditional
distribution of velocity.

Next, simulations are performed to investigate the amo@imh@mory that the statistics have for the
various paths. This is done by investigating the predicéifectiveness of different order statistics. The
17-state static predictive MPVRW model is used to predithpdy making use of those paths’ statistics
(e.g., Path 1 is predicted using Path 1’s statistics) asaegd in [?]. For these simulations, the predictor
is allowed perfect knowledge of past movements and veexcibefore it makes each prediction.

The metric of interest for these simulations is Mean SquareriRatio (MSER). Suppose the prediction
of the mobile node’s position at timé&" is (z;,y; ), and the mobile node’s true position (is;, y;). For
a path withL sample points and sampling frequenky, MSER is defined to be

1 L-1

MSBR = 3 (= 7) "+ (-3 ). @)

ave 3=

whered,,. is the average distance traveled by the mobile node from anmglking instant to the next.
The normalization is done so that performance can be comgarelifferent sampling frequencies.

In theory, a predictor withib+ 1)*2-order statistics should not perform better than a prediesings*"-
order statistics, if the path only has memaryThat is, using more thah past movements and velocities
should provide no more information about the next movemadt\aelocity than using past movements
and velocities (i.e., the path is defined by‘aorder Markov model). This is formally defined by:

PM(m\mb) = PM(m\moo) (8)
Pv(U|Vb) = Pv(’U‘VOO), (9)

wherem,, is all past relative movements, ard, is all past quantized velocities.

The MSER is found for various values oand F; for each path, and results are plotted using MATLAB.
The first path investigated is Path 1; results are shown inrgi§ for F;, = 1 Hz and F, = 4 Hz.

The second path investigated is Path 2. Resultdfor 1 Hz and F, = 4 Hz are shown in Figure 10.

Path 1 seems to have memory up to at least order 5, as seenuire RigSimulations show that as
increases from 0 to 5, MSER decreases. Fo& 4 Hz, this decrease is sharp going frém- 0 to b = 1.
However, a9 increases beyond 1, the decrease in MSER is more graduah YWhe 1 Hz, the decrease
in MSER with increasing is fairly sharp going fromb = 0 to b = 4, but is much more gradual going
from b = 4 to b = 5. Similar results are found for Path 3 and Path 4. HoweverPfth 3 at/;, = 4 Hz,
the decrease in MSER is even more gradual dfterl than for the other human paths.

Clearly, memory is more important &, = 1 Hz than atF, = 4 Hz. At F, = 1 Hz, using more
memory provides a steady improvement in MSER, up te 4. However, atF, = 1 Hz, using more
memory provides only moderate improvement in MSER ohagecreases beyond 1.

Based on these results, the PVRW model may not be an accuaatel fior realistic human mobility.
Recall that the PVRW model only has memory 1. WHén= 4 Hz, this may not be a bad approximation
to realistic human mobility. However, whef, = 1 Hz, the approximation that human paths have only
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memory 1 is not accurate. Therefore, sampling frequencyahesle in determining the accuracy of a
mobility model, and should be considered.

Figure 10 shows that Path 2 seems to have less memory tharl PHtls is seen in the leveling off of
MSER asb increases beyond 2. Therefore it seems that Path 2 has mé&neimyce using higher-order
statistics does not noticeably improve MSER. This is truebioth F, = 4 Hz and F;, = 1 Hz. This low
memory should be expected from inspection of Path 2. This gahot very complex, as it repeats itself
over and over. The effect of low complexity is to allow lowader statistics and higher-order statistics to
be able to describe the path equally well. This result candssl s a guide for determining what order
statistics are needed to accurately model a given mobyifig.tBased on these results, if a mobility type
is suspected to have low complexity, then higher-ordeissiizd may not be needed to achieve a desired
accuracy. Conversely, if a mobility type is suspected to mpmex, then higher-order statistics may be
needed.

Experiments are performed to investigate the dependenetabive movements and quantized velocities.
For each path, the 9-state JIMPVRW$-order joint statistics are gathered. These are used taoilagdc
the correlation coefficientp,, . Note that correlation is calculated for the non-zero vigleg and the
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all relative movements except the ‘no movement’ case. The welocity and ‘no movement’ states are
excluded since they always occur simultaneously (since éne simply two different ways of stating the
same movement), and so would cause the magnitude,qf to be larger than desired, thus implying
more dependence between relative movement and quantizecityehan actually exists. This is done
for several input paths with, = % Hz and F;, = 4 Hz. Dependence is shown by demonstrating that
the independence of movements and velocities assumptiaises In terms of the correlation coefficient,
independence implies,;,,y = 0. Note that|p,, | < 1.

For Path 1, the correlation coefficient is found to-be.1966 for F, = % Hz, and—0.3261 for F, = 4
Hz. Similar results are found for Path 4. However, Path 3 hamiah smaller correlation foF, = 4 Hz,

i.e., pmv = —0.08. It seems that regardless of sampling frequency, humanlityobas a dependence
between relative movements and quantized velocities.

In comparing the results of, = % Hz andF, = 4 Hz, it appears that there is more dependence between
relative movement and quantized velocity fbr = 4 Hz. This agrees with the discussion of sampling
frequency effects on conditional distributions. In thasalission, it was shown that the independent
distributions become more random as sampling frequencyedses. A similar effect appears in the
dependent distributions. As sampling frequency decreaséstive movements and quantized velocities
are less dependent upon each other, (i.e., they are mordomanwith respect to each other). This
observation is confirmed in the correlation coefficients,emha lower sampling frequency results in
a smaller absolute value ofy; . The exception is electric wheelchair mobility. For higrsampling
frequency, the relative movements are almost entirely dnevdrd case, while the velocities still have a
distribution. This explains the lack of a large correlatmmtween movement and velocity for the wheelchair
mobility at higher sampling frequencies.

Based on these results, it may not be accurate for models&b tnovement direction and velocity
independently, as the PVRW and MPVRW models do. If this is ¢hee, then a model such as the
JMPVRW may be used to generate human mobility with the deésealism.
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